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Abstract

Dictionary learning has been widely used in machine learning
field to address many real-world applications, such as classi-
fication and denoising. In recent years, many new dictionary
learning methods have been proposed. Most of them are de-
signed to solve unsupervised problem without any prior in-
formation or supervised problem with the label information.
But in real world, as usual, we can only obtain limited side in-
formation as prior information rather than label information.
The existing methods don’t take into account the side infor-
mation, let alone learning a good dictionary through using
the side information. To tackle it, we propose a new unified
unsupervised model which naturally integrates metric learn-
ing to enhance dictionary learning model with fully utilizing
the side information. The proposed method updates metric
space and dictionary adaptively and alternatively, which en-
sures learning optimal metric space and dictionary simulta-
neously. Besides, our method can also deal well with high-
dimensional data. Extensive experiments show the efficiency
of our proposed method, and a better performance can be de-
rived in real-world image clustering applications.

Introduction
Dictionary Learning (Toi and Frossard 2011) and sparse rep-
resentation (Olshausen and Field 1997) are crucial tools in
machine learning field. Dictionary is able to learn an adap-
tive set of basis elements (dictionary) from data instead of
predefined ones (Mallat 1999), so that every data sample
can be represented by sparse linear combination of these ba-
sis vectors. Since dictionary learning has proven its effec-
tiveness on numerous machine learning tasks, such as clas-
sification (Zhang and Li 2010), denoising (Aharon, Elad,
and Bruckstein 2006) and self-taught learning (Wang, Nie,
and Huang 2013), many researchers worked on this topic
and a large amount of algorithms and methods were pro-
posed to solve dictionary learning problem. (Olshausen and
Field 1997; Lewicki and Sejnowski 2006; Aharon, Elad, and
Bruckstein 2006; Mairal et al. 2009a)

In the past two decades, many researchers have proposed
different kinds of dictionary learning approaches to adapt
and solve different application problem, such as unsuper-
vised problem (Aharon, Elad, and Bruckstein 2006; Mairal

∗Corresponding author.
Copyright c© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2009a), supervised problem (Mairal et al. 2009b;
Zhang and Li 2010; Jiang, Lin, and Davis 2011) and semi-
supervised problems (Wang et al. 2013). Among these ap-
proaches, some learn dictionary without any prior informa-
tion, while the others require label information. However,
when dealing with real-world problems, we often only get
the side information i.e. pairwise constrains which indicate
whether two objects in a pair belong to the same class.

Without the use of the side information, data representa-
tion obtained from traditional unsupervised dictionary learn-
ing method such as (Aharon, Elad, and Bruckstein 2006) is
not good enough. To take full advantage of the side informa-
tion, we use metric learning method as a preprocessing step
and process dictionary learning after this step. But in this
way, the obtained metric space is only suboptimal and the
learned dictionary on this suboptimal metric space is also
not optimal. So this simple two-step method is heuristic but
not optimal.

To handle the above problem, we naturally integrate met-
ric learning to dictionary learning to enhance dictionary
learning model with fully utilizing the side information and
derive a novel unified model. As shown in Figure 1, the
proposed method updates metric space and dictionary adap-
tively and iteratively, so we can learn both optimal metric
space and optimal dictionary. In this unified model, we ex-
plicitly incorporate a sparse coding reconstruction error cri-
terion and a trace ratio of pairwise constraints criterion into
a unified objective function. In addition, because of using
metric learning to reduce the dimension of the original data,
our method can deal well with high-dimensional data, in
which redundant features may confuse dictionary learning.
And then we introduce an optimization algorithm to update
dictionary D and metric space W alternatively and itera-
tively. We perform image clustering experiments on several
real-world image data sets, including human face recogni-
tion benchmark data sets and objective recognition bench-
mark data sets. Results show that our proposed dictionary
learning in optimal projection subspace model works effec-
tively and outperforms other compared methods.

Related Work

In this section, we give a brief review of the development of
dictionary learning and sparse coding.

As we know, dictionary learning is widely used in the field
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Figure 1: A brief illustration of the proposed unified model on ETH-80 data set

of machine learning, and its effectiveness has been proven
in several applications such as classification and denoising.
Given a data set X = {x1,x2, · · · ,xn} ∈ R

d×n where d is
the dimension of features and n is the number of data points,
dictionary learning problem can be formulated as follows,

min
Y,D

n∑
i=1

1

2
‖xi −Dyi‖22 + λϕ(yi) (1)

where the learned dictionary is denoted as D and Y =
{y1, · · · ,yn} represents sparse representation. In this ob-
jective, the first term is the reconstruction error and the sec-
ond term ϕ(yi) represents a regularization term, besides λ
is a parameter used to balance the two terms in problem (1).

When using �0 norm, namely ϕ(yi) = ‖y‖0, this prob-
lem becomes an NP-hard problem and is hard to optimize.
Aharon, Elad, and Bruckstein (2006) transformed problem
(1) to be

min
D,Y

‖X −DY ‖2F
s.t. ∀i ‖yi‖0 ≤ T0, ∀j ‖dj‖2 = 1

(2)

where T0 is the sparsity constraint on each yi. They addi-
tionally proposed K-SVD algorithm to solve this problem.
K-SVD is an iterative method which contains two steps. The
first step is sparse coding step which represents the samples
based on the current dictionary and the second step dictio-
nary update step updates the overcomplete dictionary atoms
to better fit the samples. The K-SVD algorithm is flexible to
work with any pursuit method such as OMP approach. This
algorithm is effective in many real-world applications. After
that, K-SVD method was extended by imposing extra infor-
mation in the model as a task driven method (Zhang and Li
2010; Jiang, Lin, and Davis 2011). The improved methods
are supervised dictionary.

When using �1 norm, namely ϕ(yi) = ‖yi‖1, the prob-
lem (1) can be transformed to,

min
Y,D

‖X −DY ‖2F + λ‖Y ‖1 (3)

This new problem is convex separately with respect to D and
Y . To tackle it, Lee et al. (2007) introduced efficient sparse
coding algorithm, in which a local optimum can be learned.

In high-dimensional data, distance can not work and many
features provide little useful information, which makes

learning an overcomplete dictionary difficult. To tackle it,
many researchers usually adopt Principle Component Anal-
ysis (PCA) projection or random projection as a preprocess-
ing step, after which they process dictionary learning on the
obtained projection subspace.

Motivation and Proposed Model
Although there exists many dictionary learning methods
which are widely used in real-world applications, when en-
countering the real-world data set with the side information,
no existing dictionary method is suitable for it. In order to
adapt the real-world problems better, we naturally integrate
metric learning to enhance dictionary learning model with
fully utilizing the side information and construct a novel
unified model to update metric space and dictionary adap-
tively and alternatively, hence optimal metric space and op-
timal dictionary can be learned simultaneously. Because of
the learned optimal metric space, the proposed method can
also deal well with high-dimensional data.

Learning a Projection Matrix via Metric Learning

Distance metric plays a critical role in real-world applica-
tion. Good distance metrics are crucial to many computer
vision tasks, such as image classification and content-based
retrieval(Liu and Tsang 2015; Wang, Nie, and Huang 2013;
Liu and Tsang 2017). Especially in high-dimensional data,
distance usually does not work, therefore we can adopt met-
ric learning method and project the original data to an ap-
propriate metric space.

The goal of metric learning is to learn an adaptive
distance, such as Mahalanobis distance dM (xi,xj) =√

(xi − xj)TM(xi − xj for the problem of interest using
the information brought by training examples. Most of met-
ric learning methods use weakly-supervised constrains such
as pairwise constrains. The pairwise constrains contain the
information whether two objects in a pair come from the
same class. Pairwise constraints can be represented by S and
D as{ S = {(xi,xj) | xi and xj are in the same class} ,

D = {(xi,xj) | xi and xj are not in the same class} ,
(4)

where we call S as must-links and D as cannot-links (Xing
et al. 2003).
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Xing et al. (2003) first studied how to learn a distance met-
ric from must-links and cannot-links. Relevance Component
Analysis (RCA) (Bar-Hillel et al. 2003) was then proposed
and was improved later by Discriminative Component Anal-
ysis (DCA) and Kernel DCA (Hoi et al. 2006). Despite their
effectiveness, when dealing with high-dimensional data,
Xing’s approach is computationally inefficient, and both
RCA and DCA face the singular problem when computing
the covariance matrix for the data point pairs in the must-
links. To tackle this, Xiang, Nie, and Zhang (2008) pro-
posed a new framework which formulated the distance met-
ric learning problem as a trace ratio minimization problem
as follows.

Considering that Mahalanobis distance metric M ∈ R
d×d

is a positive semi-definite matrix, we can reasonably write
M = PPT by eigen-decomposition, where P ∈ R

d×k

with k ≤ d and k is the projection dimensionality. Thus
the Mahalanobis metric can be rewritten as dM (xi,xj) =√

(xi − xj)TPPT (xi − xj = ‖PT (xi − xj)‖2, which in-
deed defines a transformation of z = PTx under the pro-
jection matrix P . Then we calculate the covariance matrix
of the data pairs in the must-links and cannot-links respec-
tively as follow:

Sw =
∑

(xi,xj)∈S
(xi − xj)(xi − xj)

T ,

Sb =
∑

(xi,xj)∈D
(xi − xj)(xi − xj)

T .
(5)

Xiang, Nie, and Zhang (2008) proposed to learn the projec-
tion matrix W by solving the following objective:

min
P

Tr(PTSwP )

Tr(PTSbP )

=

∑
(xi,xj)∈S‖(xi − xj)

TP‖22∑
(xi,xj)∈D‖(xi − xj)TP‖22

=
‖AP‖2F
‖BP‖2F

s.t. PTP = I

(6)

where each row of A is one (xi − xj)
T that satisfies

(xi,xj) ∈ S , and similarly each row of B is one (xi−xj)
T

that satisfies (xi,xj) ∈ D.

Dictionary Learning in Optimal Metric Space

In traditional dictionary, when facing high-dimensional data,
many previous studies adopt a two-step method i.e. using a
preprocessing step to project the original data into a low-
dimensional subspace via Principle Component Analysis
(PCA) projection or random projection and then do dictio-
nary learning on it. We can also follow this idea to use met-
ric learning as a preprocessing step. But metric learning on
the original data only obtain a suboptimal metric space and
can not help learn a good dictionary on this suboptimal met-
ric space, which means this two-step method is heuristic but
not optimal. A bad projection can lead to a failure in the fol-
lowing dictionary learning process, in which case the sparse

representation of a sample based on the degenerated dictio-
nary can be misleading and useless. Thus, it is necessary to
pay attention to finding an optimal metric space that works
effectively in the following dictionary learning step.

In this paper, we propose to learn dictionary and metric
space simultaneously, which confirms both of them optimal.
To do this, we combine objective (6) with the traditional dic-
tionary learning model. In this way, a metric space which is
the most suitable for dictionary learning can be learned au-
tomatically. It not only takes full advantage of the side infor-
mation to learn dictionary in optimal metric space but also
deals well with high-dimensional data.

Given a data set X = {x1,x2, · · · ,xn} ∈ R
d×n and

relevant side information, our proposed unified dictionary
learning model, which learns dictionary in optimal metric
space, can be formulated as follow:

min
D,Y,P

‖PTX −DY ‖2F ‖AP‖2F
‖BP‖2F

s.t. ∀i ‖yi‖0 ≤ T0

∀j ‖dj‖2 = 1

PTP = I

(7)

where P ∈ R
d×k is the metric space matrix, yi is the ith

column of sparse representation matrix Y ∈ R
p×n and dj

is the jth column of dictionary matrix D ∈ R
k×p. T0 is the

sparsity constraint on each yi.
In the objective function (7), the first term represents dic-

tionary learning and sparse learning procedure when we ob-
tain a projection matrix P , and the second term represents
the metric learning step which can obtain a projection ma-
trix P . It is obvious that when we perform dictionary learn-
ing and sparse representation method to minimize the recon-
struction error, we will also take the projection procedure
into account. It is easy to know that the update of projection
matrix P is affected by the reconstruction error. After the
optimization, a metric space matrix P which is suitable for
dictionary learning can be learned automatically.

By constructing a unified model which integrates metric
learning into dictionary learning, we obtain an optimal met-
ric space, in which the manifold structures are preserved
and the distance metric is meaningful. Therefore, compar-
ing with traditional dictionary learning methods which uti-
lize PCA projection or random projection as a preprocess-
ing to reduce dimensionality, the proposed method is more
effective in high-dimensional data.

Optimization Algorithm

So far, we have constructed our objective function (7), and
it is a non-convex function, which is hard to optimize di-
rectly. In this paper, we use Alternative Direction Method
(ADM) to simplify the problem (7). In this way, we can
convert this complicated multivariate non-convex problem
to two subproblems. In the optimization procedure, K-SVD
method (Aharon, Elad, and Bruckstein 2006) and projected
gradient descent method will be utilized to solve each sub-
problem.
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Algorithm 1 The K-SVD algorithm to solve problem (8)
Input: Z = PTX ∈ R

k×n

Output: D ∈ R
k×p, Y ∈ R

p×n

Initialization: Set the dictionary matrix D(0) ∈ R
k×p with

�2 normalized columns. Set t = 1.
while not converge do

Sparse Coding Step: Use orthogonal matching pur-
suit method to compute the sparse representation vec-
tors yt

i , by approximating the solution of i = 1, 2, ..., n,
minyi

‖zi −Dyi‖2F s.t.‖yi‖0 ≤ T0.
Dictionary Update Step: For each column j = 1, 2, ..., p
in Dt−1, update it by
• Define the group of examples that use this atom,

wj =
{
i|1 ≤ i ≤ n,yt

j(i) �= 0
}

• Compute the overall representation error matrix,

Ej = Z −
∑
h �=j

dhy
t
h

• Restrict Ej by choosing only the columns in wj and
obtain ER

j .

• Apply SVD decomposition ER
j = UΔV . Choose

the updated dictionary column d̂t
j to be the first col-

umn in U . Update the coefficient vector yt
j to be the

first column of V multiplied by Δ(1, 1).
t = t+ 1

end while

Update dictionary D and sparse representation Y :
When fixing the projection matrix P , the problem (7) be-
comes:

min
D,Y

‖PTX −DY ‖2F
s.t. ∀i ‖yi‖0 ≤ T0

∀j ‖dj‖2 = 1

(8)

It is a traditional dictionary learning problem, and there are
many effective methods to handle it. In this paper, we select
K-SVD algorithm to solve it. The procedure of this algo-
rithm is described briefly in Algorithm 1.

Update projection matrix P : When fixing D and Y , the
problem (7) becomes a problem with matrix P as:

min
P

‖PTX −DY ‖2F ‖AP‖2F
‖BP‖2F

s.t. PTP = I.

(9)

where P is the orthogonal matrix. The denominator of this
function makes this problem computationally complicated
to solve. We adopt the idea from trace ratio problem (Jiang
and Chung 2014) to simply this problem, and problem (9)
can be transformed to

min
P

‖PTX −DY ‖2F + γ
(‖AP‖2F − λ‖BP‖2F

)
s.t. PTP = I

(10)

Algorithm 2 Algorithm to solve problem (9)
Input: X ∈ R

d×n, D ∈ R
k×p, Y ∈ R

p×n

Output: W ∈ R
d×k

Initialization: Initialize D0 ∈ R
d×k and set t = 1.

while not converge do

1. Calculate the gradient of problem (10) with respect to
P .

∂l(P t−1)

∂W t−1
= XXTP t−1 −X (DY )

T

+ γ
(
ATAP t−1 − λBTBP t−1

)
2. Compute alternative matrix P̂ :

P̂ = P t−1 − η
∂l(P t−1)

∂P t−1

3. Compute projection matrix P by solving problem (14):

P = UId,kV

where U and V is obtained by SVD of P̂ , namely P̂ =
UΔV .
4. t = t+ 1

end while

Then this formulation is easy to use projected gradient de-
scent algorithm to solve. At first, we ignore the constraint
PTP = I and adopt gradient descent approach to compute
matrix P . Defining the objective function of the problem
(10) to be l(P ), we have:

∂l(P t)

∂P t
= XXTP t−1 −X (DY )

T

+ γ
(
ATAP t − λBTBP t

) (11)

P̂ = P t − η
∂l(P t)

∂P t
(12)

where P̂ is the alternative matrix. After that, we project P̂ to
the domain of matrix P according to the constraint in prob-
lem (10) and get:

P t+1 = π(P̂ ), (13)

where
π(P̂ ) = arg min

PTP=I
‖W − P̂‖2F . (14)

Defining the Singular Value Decomposition (SVD) of P̂
to be P̂ = UΔV , according to (Manton 2002), the solution
to problem (14) is P = UId,kV . Algorithm 2 shows the
procedures to solve the problem (9).

Using the algorithms above, we separate the whole prob-
lem (7) to two subproblems. The first one is fixing projection
matrix to update W and Y , while the other one is fixing ma-
trix D and Y to update P . We compute these two subprob-
lems alternatively and iteratively. In the end, the objective
value of problem (7) will converge. To sum up, Algorithm 3
presents the brief structure of our algorithm.
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Algorithm 3 Algorithm to solve problem (7)
Input: X ∈ R

d×n

Output: D ∈ R
k×p, Y ∈ R

p×n, P ∈ R
d×k

Initialization: Initialize P 0 ∈ R
d×k and set t = 1.

while not converge do

1. Update matrix D, Y by using K-SVD method in algo-
rithm (1).

dj = u1.

yj = Δ(1, 1)v1

2. Update W by solving problem (9) as Algorithm (2).

∂l(P t−1)

∂P t−1
= XXTP t−1 −X (DY )

T

+ γ
(
ATAP t−1 − λBTBP t−1

)

P t = π(P t−1 − η
∂l(P t−1)

∂P t−1
)

3. t = t+ 1

end while

(a) ORL

(b) UMIST

(c) PIE

(d) FERET

(e) JAFFE

(f) COIL-20

(g) ETH-80

Figure 2: The image samples of benchmark data sets

Experimental Results
In this section, we evaluate the proposed method in the task
of data clustering, where our goal is to examine the effec-

tiveness of our new method when dealing with the side in-
formation.

Data Preparation

We experiment with seven benchmark data sets including
five face recognition benchmark data sets ORL (Samaria
and Harter 1994), UMIST (Phillips, Bruce, and Soulie
1998), PIE (Sim, Baker, and Bsat 2002), FERET (Phillips
et al. 1998), JAFFE (Lyons et al. 1998) and two objec-
tive recognition benchmark data sets COIL-20 (Nene et al.
1996), ETH-80 (Leibe and Schiele 2003), whose details are
summarized in Table 1. Figure 2 shows the sample images
of these benchmark data sets.

Following relevant research, we generate the side infor-
mation for each set as follows. For each constraint, we ran-
domly pick up one pair of data points from the original data
set (the labels of which are available for evaluation purpose
but unavailable for clustering). If the labels of this pair of
data points are the same, we generate a must-link, otherwise
a cannot-link is generated.

Experiment Setup

To evaluate the performance of our proposed method, we
compare it with some state-of-the-art two-step methods as
follow:

• Rand+KSVD: Use Random Projection to obtain
Projection Subspace and then use K-SVD method
(Aharon, Elad, and Bruckstein 2006) to do dictionary
learning on it.

• Rand+ODL: Use Random Projection to obtain Projec-
tion Subspace and then use Online Dictionary Learning
method (Mairal et al. 2009a) to do dictionary learning
on it.

• Rand+SSC: Use Random Projection to obtain Projec-
tion Subspace and then use Semi-Supervised Cluster-
ing method (Basu, Banerjee, and Mooney 2004) with
the side information to do clustering on it.

• Rand+Kmeans: Use Random Projection to obtain Pro-
jection Subspace and then use K-means method to do
clustering on it.

• PCA+KSVD: Use Principle Component Analysis
(PCA) method to obtain Projection Subspace and then
use K-SVD method (Aharon, Elad, and Bruckstein
2006) to do dictionary learning on it.

• PCA+ODL: Use Principle Component Analysis
(PCA) method to obtain Projection Subspace and then
use Online Dictionary Learning method (Mairal et al.
2009a) to do dictionary learning on it.

• PCA+SSC: Use Principle Component Analysis (PCA)
method to obtain Projection Subspace and then use
Semi-Supervised Clustering method (Basu, Banerjee,
and Mooney 2004) with side information to do cluster-
ing on it.

• PCA+Kmeans: Use Principle Component Analysis
(PCA) method to obtain Projection Subspace and then
use K-means method to do clustering on it.

4354



Table 1: Descriptions of the experimental data sets

Data Set ORL UMIST PIE FERET JAFFE COIL-20 ETH-80

# Number of Samples (n) 400 575 1632 1400 213 1440 656
# Input Dimensionality (d) 10304 10304 4096 6400 16384 16384 16384
# Number of Clusters (c) 40 20 68 200 10 20 8

# Reduced Dimensionality (k) 50 40 50 40 50 50 40
# Dimensionality of Dictionary (p) 80 60 90 50 60 60 50

Table 2: Clustering performances of the compared mehods measured by ACC (%)

ORL UMIST PIE FERET JAFFE COIL-20 ETH-80

Rand+KSVD 30.00 35.30 29.60 17.50 41.31 53.33 42.38
Rand+ODL 44.75 41.91 14.52 23.50 70.42 53.89 43.14
Rand+SSC 28.75 32.70 11.27 20.79 44.60 36.67 42.07

Rand+Kmeans 26.50 29.22 10.66 19.57 40.38 35.63 37.04
PCA+KSVD 63.25 48.17 54.47 25.07 58.22 60.56 46.04
PCA+ODL 58.00 43.30 22.12 24.26 82.63 60.69 44.36
PCA+SSC 70.00 47.30 17.16 28.00 84.51 66.39 47.87

PCA+Kmeans 69.75 44.00 16.73 27.21 82.16 64.10 41.62
ML+KSVD 43.75 39.13 54.96 25.21 38.03 52.08 19.21
Our Method 71.75 55.48 57.84 32.14 90.61 67.01 49.06

Table 3: Clustering performances of the compared mehods measured by NMI (%)

ORL UMIST PIE FERET JAFFE COIL-20 ETH-80

Rand+KSVD 54.36 43.37 49.50 60.88 58.83 62.43 30.43
Rand+ODL 64.57 56.47 41.17 64.32 69.35 62.99 36.69
Rand+SSC 54.33 41.33 32.52 64.08 44.38 45.32 35.47

Rand+Kmeans 50.94 40.50 30.77 63.74 42.58 45.18 35.05
PCA+KSVD 77.56 59.50 66.53 62.84 55.47 70.89 37.94
PCA+ODL 77.93 60.18 47.28 63.73 83.00 68.64 39.10
PCA+SSC 85.28 67.35 44.76 68.87 86.79 74.92 44.15

PCA+Kmeans 86.25 65.90 44.52 68.37 88.40 78.97 46.86

ML+KSVD 67.76 57.37 70.14 64.08 47.39 63.16 16.04
Our Method 84.97 72.40 70.45 68.98 88.55 72.83 42.89

• ML+KSVD: Use Metric Learning method (Xiang,
Nie, and Zhang 2008) to obtain Projection Subspace
and then use K-SVD method (Aharon, Elad, and
Bruckstein 2006) to do dictionary learning on it.

Except Rand+SSC, Rand+Kmeans, PCA+SSC and
PCA+Kmeans, other methods all need K-means as the
postprocessing step to get the clustering indicator. We per-
form 50 times K-means for each method and choose the best
result. Besides, we resort to clustering accuracy (ACC) and
normalized mutual information (NMI) as the metric, which
are defined as follows.

• Clustering Accuracy (ACC) is defined as follow:

ACC =

∑n
i=1 δ(predi, yi)

n
(15)

where predi is the clustering label and yi is the true
label. δ(x, y) = 1 if x = y, otherwise δ(x, y) = 0.
Larger ACC indicates a better clustering result.

• Normalized Mutual Information (NMI) is defined as

NMI =
I(Pred, Y )

(H(Pred) +H(Y )) /2
(16)

where I(Pred, Y ) is the mutual information between
the predicted clustering label Pred and the true label

4355



(a) ORL (b) UMIST (c) PIE (d) FERET

(e) JAFFE (f) COIL-20 (g) ETH-80

Figure 3: The objective value of our method running on benchmark data sets

Y . H(·) denotes the entropy function. Larger NMI in-
dicates a better clustering result.

Experiment Analysis

The clustering performance of all the methods are reported
in Table 2 and Table 3, from which we have the following
interesting observations.

First, our method has better performance than all other
compared dictionary learning methods, which demonstrates
that our method is able to make full use of the side in-
formation and learn a good dictionary in optimal metric
space. Without the use of side information, traditional dic-
tionary learning method cannot obtain an optimal dictionary.
Our unified model integrates metric learning into dictionary
learning to learn an optimal metric space from the side infor-
mation and learn a good dictionary on it. This novel model
has better performance than traditional dictionary learning
method without the use of the side information. And the
learned metric space can improve the quality of dictionary.

Second, our method is consistently better than
ML+KSVD, which confirms that our proposed unified
model is effective and has better performance than the
simple two-step method. The simple two-step method
which use metric learning as a preprocessing can only
learn a suboptimal metric space rather global optimal. The
unified model can learn metric space W and dictionary
D iteratively and alternatively to confirm that the learned
metric space is optimal.

Third, our method performs better than normal clustering
methods, which demonstrates that our method takes full ad-
vantage of the side information better and it can help learn a
good dictionary and sparse representation for clustering.

Figure 3 shows the objective value of our method running
on these benchmark data sets. As shown in Figure 3, our
method can converge fast when running on these data sets,
which confirms the efficiency of our proposed optimization
algorithm.

Conclusion

In this paper, we designed a novel unified dictionary learn-
ing model to do dictionary learning in optimal metric space.
One important advantage of our method is integrating met-
ric learning to enhance dictionary learning with fully utiliz-
ing of the side information. And our proposed unified model
updates metric space W and dictionary D alternatively and
iteratively to confirm that both metric space and dictionary
are optimal. Besides, the novel model can handle well high-
dimensional data. The proposed method is evaluated on clus-
tering tasks in real-world image data sets. The experimental
results demonstrated that our model outperforms the other
compared methods.
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